175 research outputs found

    Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression patter

    Full text link
    Arabidopsis ATSIP2 has recently been suggested to be a raffinose synthase gene. However, it has high amino acid identity to functionally characterized alkaline α-galactosidases from Cucumis melo and Zea mays. Using the Sf9 insect cell expression system, we demonstrate that recombinant ATSIP2 is a genuine alkaline α-galactosidase with a distinct substrate specificity for raffinose, and not a raffinose synthase. A β-glucuronidase reporter construct using the ATSIP2 promoter shows that ATSIP2 is strongly expressed in sink tissues of Arabidopsis, i.e. sink leaves and non-xylem parts of the root stele, suggesting a physiological function in raffinose phloem unloading

    A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development

    Get PDF
    - Flowering plants evolved from an unidentified gymnosperm ancestor. Comparison of the mechanisms controlling development in angiosperm flowers and gymnosperm cones may help to elucidate the mysterious origin of the flower. - We combined gene expression studies with protein behaviour characterization in Welwitschia mirabilis to test whether the known regulatory links between LEAFY and its MADS-box gene targets, central to flower development, might also contribute to gymnosperm reproductive development. - We found that WelLFY, one of two LEAFY-like genes in Welwitschia, could be an upstream regulator of the MADS-box genes APETALA3/PISTILLATA-like (B-genes). We demonstrated that, even though their DNA-binding domains are extremely similar, WelLFY and its paralogue WelNDLY exhibit distinct DNA-binding specificities, and that, unlike WelNDLY, WelLFY shares with its angiosperm orthologue the capacity to bind promoters of Welwitschia B-genes. Finally, we identified several cis-elements mediating these interactions in Welwitschia and obtained evidence that the link between LFY homologues and B-genes is also conserved in two other gymnosperms, Pinus and Picea. - Although functional approaches to investigate cone development in gymnosperms are limited, our state-of-the-art biophysical techniques, coupled with expression studies, provide evidence that crucial links, central to the control of floral development, may already have existed before the appearance of flowers.This work was supported by funding from the Centre National de la Recherche Scientifique (ATIP+ to F.P.), the ANAgence Nationale de la Recherche (ANR) (Plant-TFcode to F.P. and C.P.S.), PhD fellowships from the University J. Fourier, Grenoble (to E.M. and M.M.), Grenoble Alliance for Cell and Structural Biology (ANR-10-LABX-49-01), the SYNTHESYS Project (to E.M.), the Floral Genome Project (National Science Foundation (NSF) Plant Genome Research Program project DBI-0115684 to M.W.F.) and NSF DEB-9974374 (to M.W.F.)

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    Get PDF
    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression

    Get PDF
    Transcriptional repression involves a class of proteins called corepressors that link transcription factors to chromatin remodeling complexes. In plants such as Arabidopsis thaliana, the most prominent corepressor is TOPLESS (TPL), which plays a key role in hormone signaling and development. Here we present the crystallographic structure of the Arabidopsis TPL N-terminal region comprising the LisH and CTLH (C-terminal to LisH) domains and a newly identified third region, which corresponds to a CRA domain. Comparing the structure of TPL with the mammalian TBL1, which shares a similar domain structure and performs a parallel corepressor function, revealed that the plant TPLs have evolved a new tetramerization interface and unique and highly conserved surface for interaction with repressors. Using site-directed mutagenesis, we validated those surfaces in vitro and in vivo and showed that TPL tetramerization and repressor binding are interdependent. Our results illustrate how evolution used a common set of protein domains to create a diversity of corepressors, achieving similar properties with different molecular solutions

    Characterization of Two Soybean (Glycine max L.) LEA IV Proteins by Circular Dichroism and Fourier Transform Infrared Spectrometry

    Get PDF
    Late embryogenesis-abundant (LEA) proteins, accumulating to a high level during the late stages of seed development, may play a role as osmoprotectants. However, the functions and mechanisms of LEA proteins remained to be elucidated. Five major groups of LEA proteins have been described. In the present study, we report on the characterization of two members of soybean LEA IV proteins, basic GmPM1 and acidic GmPM28, by circular dichroism and Fourier transform infrared spectroscopy. The spectra of both proteins revealed limited defined secondary structures in the fully hydrated state. Thus, the soybean LEA IV proteins are members of ‘natively unfolded proteins’. GmPM1 or GmPM28 proteins showed a conformational change under hydrophobic or dry conditions. After fast or slow drying, the two proteins showed slightly increased proportions of defined secondary structures (α-helix and β-sheet), from 30 to 49% and from 34 to 42% for GmPM1 and GmPm28, respectively. In the dehydrated state, GmPM1 and GmPM28 interact with non-reducing sugars to improve the transition temperature of cellular glass, with poly-l-lysine to prevent dehydration-induced aggregation and with phospholipids to maintain the liquid crystal phase over a wide temperature range. Our work suggests that soybean LEA IV proteins are functional in the dry state. They are one of the important components in cellular glasses and may stabilize desiccation-sensitive proteins and plasma membranes during dehydration

    The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis

    Get PDF
    The N-end rule pathway targets protein degradation through the identity of the amino-terminal residue of specific protein substrates. Two components of this pathway in Arabidopsis thaliana, PROTEOLYSIS6 (PRT6) and arginyl-tRNA:protein arginyltransferase (ATE), were shown to regulate seed after-ripening, seedling sugar sensitivity, seedling lipid breakdown, and abscisic acid (ABA) sensitivity of germination. Sensitivity of prt6 mutant seeds to ABA inhibition of endosperm rupture reduced with after-ripening time, suggesting that seeds display a previously undescribed window of sensitivity to ABA. Reduced root growth of prt6 alleles and the ate1 ate2 double mutant was rescued by exogenous sucrose, and the breakdown of lipid bodies and seed-derived triacylglycerol was impaired in mutant seedlings, implicating the N-end rule pathway in control of seed oil mobilization. Epistasis analysis indicated that PRT6 control of germination and establishment, as exemplified by ABA and sugar sensitivity, as well as storage oil mobilization, occurs at least in part via transcription factors ABI3 and ABI5. The N-end rule pathway of protein turnover is therefore postulated to inactivate as-yet unidentified key component(s) of ABA signaling to influence the seed-to-seedling transition

    Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    Get PDF
    Background: Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings: We applied next-generation Illumina sequencing technology to analyze global gen

    Repression of Floral Meristem Fate Is Crucial in Shaping Tomato Inflorescence

    Get PDF
    Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that JOINTLESS (J), which encodes a MADS-box protein of the same clade than SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA - the orthologue of the Arabidopsis LEAFY (LFY) gene - shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the SINGLE FLOWER TRUSS (SFT) gene, the tomato orthologue of FLOWERING LOCUS T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM

    Erratum: JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework

    Get PDF
    JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package
    corecore